CRUISING FOR SPEED

TECHNIQUES FOR EFFICIENT INTERTHERMAL SOARING

INTRODUCTION

- CRUISING = 60%-80% OF FLIGHT
 HOW FAST TO FLY BETWEEN THERMALS?
- MACREADY STILL RULES BUT WITH NUANCES WORTH UNDERSTANDING

 OUT MACREADYING MACREADY – FOLLOW THAT ENERGY PATH!

PROGRAM PLAN

REVIEW CLASSIC MACREADY THEORY

WIL SCHUEMANN'S PAPER
 <u>The Price You Pay For Macready Speeds</u>

JOHN COCHRANE'S PAPER
 – Just A Little Faster Please

TECHNIQUES FOR SPECIFIC SITUATIONS

Classic Macready Theory

Assumptions

- All thermals same strength at all altitudes
 Strength of next thermal is known
 Interthermal sink/lift is assumed constant
 Three Pilots
 Hair on fire Pilot C
 Namby pamby Pilot B
 - Ollie Optimal Pilot A

PRINCIPLE OF OPTIMIZATION

Principle of optimization

Classic Macready Theory Optimal inter-thermal speed for maximum average cross country speed can be calculated

- Effect of inter-thermal sink/lift– essentially subtracts from/adds to achieved climb rate
 Effect of Headwind/Tailwind--none except on final glide
- Water ballast-- shifts polar down to right
- Put in an anticipated thermal strength, a polar and a wing loading to the on-board computer and a speed to fly emerges as a tone and needle indication

PROBLEMS WITH MACREADY

Don't know next climb rate

Climb rate varies with altitude

And time to center the climb – achieved climb rate

 Don't know sink/lift between thermals— varies constantly Wil Schuemann- renaissance soaring man

- Total energy compensation box
- Water ballast
- Winglets
- Discus plan-form
- Seminal paper on modified MacCready flight
 - Soaring symposia—1972— see references

The Price You Pay For Macready Speeds

by Wil Schuemann

Cruise speed vs. achieved Average speed

minimal difference +/- 8 to10 knots
Big difference at best L/D

Effect on range – dees slower speed

increase range? Yes with respect to
airmass- more range, larger chance to find
special thermal (Remember Pilot B?)

Who would you rather be if you don't know where the next thermal is?

Flying MaCready accurately ain't easy

What is the next (achieved) thermal strength??

- Chasing the needle may do more damage than good
 - Control drag
 - Non-optimal G loading
 - Damp out airframe responses
 - Scare the s--- out of fellow pilots

Distracts from other tasks

Lessons learned Speed variations 8-10 knots from ideal Macready minimal impact on ave. x/c speed Speeding in sink gains little gained with slowing ive slightly But perfect sp higher N27UF

Schuemann's conclusions

- A moderate speed with little variation costs very little speed
- Reducing MacCready intensity yields more time to think!!! And look outside
- Increasing range may improve thermal selection
- Slower flight makes air easier to assess

John Cochrane

PHD economics, U. of Chicago dept. Finance
Highly successful competition pilot
Regular contributor to Soaring magazine

Just A Little Faster Please John Cochrane

- Speed and modern MacCready theoryobservations
 - MacCready still key to in-flight speed decisions
 - MacCready determines cruise speed--- the mathematical solution is still valid
 - But what is the correct MacCready value?
 - Reichmann's elliptical thermal lift concept- bottom and top are usually less than mid-level climb rate
 - Likelihood of finding best thermals goes down with altitude

Random lift distribution curve plotted against altitude

- Assumes thermals vary in strength quite a bit

 There are many weak thermals to use to save a flight low

- There are a few really good thermals

 Seems to fit with pilots' real world observations

Proper MacCready setting drifts down as glider gets lower

Thermal Strength	1	Miles	liles	
	1	5	10	
1 knot	20%	90%	99%	
2 knots	10%	61%	84%	
4 knots	5%	30%	52%	
6 knots	2%	10%	18%	

Table 1. Probability of finding a thermal at least this strong in the indicated number of miles

Figure 2. MacCready value vs. altitude, for a Discus facing the thermals of Table 1.

3

John Cochrane (cont.)

CENTERING TIME-AT THERMAL ENTRY

- Often several circles
- Dilutes average rate of climb
- Makes stopping for short climbs less efficient
- Longer down low and on windy days
- Effect larger for strong thermals
- Supports trying to pick easily centered thermals

Implications for Flying Tactics

- Recognize that thermals are variable
 Steadily reduce MacCready as altitude lower
- Leave weak thermals to search as get higher
- Average MacCready much lower seen
- Always adjust MacCready to expected future—save altitude now!!!

DJ Practical Observations

- In a modern glass ship
 - Fly 60-70 knots if nervous
 - Fly 80 knots if feels OK
 - Fly 90-100 knots if great day
- MaCready on 2 and leave it alone
- No zoomies gentle pull-ups and pushovers to feel the air
- Concentrate instead on following the max energy path
- Other observations???

Flying Energy Paths

Well Formed Cu's

Isolated or random cumulus clouds read tops as well as bottoms

Cumulus condestus

Cu-nim

Cruising techniques

- Cruising with cumulus clouds
 - Classic Streets
 - Speed to fly– MacCready still applies
 - Altitude-- higher better but need to see
 - Deviation angles up to 30 degrees, occ. more
 - Bridging to next street
 - Often best speed will cause falling away from clouds
 - "End of street" planning
 - Get high

Cruising techniques

 - "Make your owns"

- Even a random pattern of dots can be connected
- Optimize the time spent "in the shade"
- Fully utilize the clouds you have

Departing the Cloud When the lift drops off, not necessarily at cloudbase! Want to maximize average climb plan ahead – while you're topping out speed choices – maximize the weak lift use the rest of the cloud Iook for bridges to next energy path step Ideally should have idea where next stop will be

When to stop in general Long cruise legs reduce centering loss No point in stopping high – centering time loss

- Set a height band floor—usually ~ top 30-40% of thermal—
 - Below 50%, lift begins to disconnect from clouds

 Try to end streets high
 Understand the thermal strength profile for the day- changes with height

Big Blue Holes Assess– why blue?? - Lake/sea shadow? – Airmass change - Wave influence - High wind streeting Get high and try to stay high Go slow until you've had time for assessment -may be good but dry- or not!!! Look for gliders- good thermal markers

Blue thermal cruising

Read the ground Streeting prominent on blue days Wind direction key!!! – Wind arrow on Ilec or GNII, etc -Streets almost always on the wind -Feel for the lines of lift and do this continuously -Deviate onto the lines of lift (energy paths)

Blue thermal cruising

- Go slower?- greater range when weak and blue
- Practice centering lines of lift on blue days
 Feel for asymmetric lift, and make small turns into it

 Try to sustain reduced sink – can augment achieved L/D substantially, extend range, lead to a thermal

Weak blue day strategy

- Greater uncertainty warrants more conservative MacCready
- Find some-company 3-5 gliders not 20
- Spread out when cruising with other gliders—don't hide behind
- Lift asymmetries and lift lines —lead to thermal
- Read the ground

When to slow up (changing gears)

- Cochrane's theory progressive
- When going from cu to blue
- Approaching overdeveloped area
- Cirrus overcast ahead
- Known or visible wet area ahead—lake, known shower history, standing water,
- Multiple low gliders ahead
- Lots of whining on the radio
- "No see-um's" ahead

LOW Saves

- Go slow for max range
- Look for birds, other gliders, dust devils
- ridges, rock piles, fire, smoke, edge of lake or woods
- Take anything and work its edges, especially up-wind-- be patient
 Quit at a safe altitude- know your limits

Water ballast

Adjustable wing-loading

- Slows climb directly, increased circle speed and diameter (farther away from core)
- Improves glide performance-greater range, ave.
 speed
- Rule of thumb-keep water if ave. lift 350 ft./min or more
- Especially helpful on long streets, ridges

Water ballast use (cont.)

Don't dump too soon
May need to dump a portion

Low saves
Thermals generally small in diameter
Don't dump in gaggle thermals

Water ballast (cont.)

Check your system
 Practice before you go to a contest

 Loading's a hassle
 Flies differently

Adds an interesting element of complexity

What we really do

- Conservative MacCready dictates ave. Speed
- Plan ahead, WAY AHEAD
- Not a lot of zooming—gentle speed changes
- Slower with lower highly variable
- Major emphasis on best track (thus improved L/D)
- Extreme emphasis on finding best thermals
 - Leave mediocre thermals as soon as safe

What we do (cont.)

Major deviations are the norm Do what it takes to avoid out-landings Remember the sky usually is not falling Have fun, don't obsess about falling behind Everybody has a bad day sometime Practice, practice, practice Fly for speed every time you fly Get better!!!

Recommended reading

- Cross-Country Soaring: Helmut Reichmann
 Introduction To Cross-Country Soaring: Kai Gertson <u>http://www.flsc.org/XCountry/Cross-CountryB0202.pdf</u>
- The Price You Pay For MacCready Speeds: Wil Schuemann http://www.betsybyars.com/guy/soaring_sy mposia/

 Just A Little Faster Please: john Cochrane http://faculty.chicagogsb.edu/john.cochrane/ research/Papers/#maccready

The end